Hyung-Lok Chung, Ph.D. 

Director, Drosophila Core
Houston Methodist Research Institute
Assistant Professor of Neurology
Houston Methodist Academic Institute
Stanley H. Appel Department of Neurology
Weill Cornell Medical College

Orcid ID

Dr. Chung is an accomplished scientist and academic specializing in genetics and neurology. Currently serving as an Assistant Professor of Genetics at the Department of Neurology at Houston Methodist Research Institute and Weill Cornell Medicine.

During his Ph.D. studies at KAIST (Korea Advanced Institute of Science and Technology), Dr. Chung focused on investigating the mechanisms of action of the tumor suppressor gene Schip1 within the context of the Hippo signaling pathway. This research likely involved examining the role of Schip1 in regulating cell growth, proliferation, and apoptosis, as the Hippo pathway is known to play a crucial role in these processes.

Following his PhD, Dr. Chung pursued postdoctoral training at Baylor College of Medicine. During this time, he shifted his research focus to using the fruit fly (Drosophila) as a model organism to study both rare and common neurological diseases affecting humans. The fruit fly model offers several advantages, including its well-characterized genetic toolkit, short lifespan, and conserved biological pathways, making it a valuable system for studying human diseases.

Dr. Chung serves as a scientific advisor for the Mitchell & Friends Foundation, a role in which he provides expertise and guidance on scientific matters related to Mitchell Syndrome research.

Dr. Chung’s ultimate goal is to advance therapeutic approaches for both rare and common neurodegenerative diseases by leveraging the fruit fly model. By studying the underlying genetic and molecular mechanisms of these diseases in flies, he aims to identify potential therapeutic targets and develop novel treatment strategies. This work has the potential to open new avenues for understanding and treating neurodegeneration, ultimately benefiting patients with these debilitating conditions.